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Europa Clipper

• Spacecraft to be sent to a Jupiter 
orbit and complete multiple flybys 
of the moon Europa

• Will map and study Europa, 
primarily focusing on investigating 
the existence of a subsurface ocean

• MMH fuel and NTO (MON-3) 
oxidizer [1]
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Overview

• Slosh is the movement of a liquid within a container
• Spacecraft must deal with this phenomenon because liquid 

propellants will slosh throughout the course of the mission
• This study examined periodic slosh under constant settling 

acceleration
• Physical testing in an appropriate acceleration environment is 

preferred but prohibitively expensive
• Equivalent mechanical models to match CFD output were derived to 

simplify inputs to the attitude control system software
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Categories

High-G Slosh
• Bond Number significantly 

greater than one
• Settling accelerations dominate
• Modeled with STAR-CCM+
• Mechanical model consists of 

two damped pendulums and a 
static mass [2]

Low-G Slosh
• Bond number significantly less 

than one
• Surface tension dominates
• Modeled in Surface Evolver
• Mechanical model consists of a 

single damped pendulum, a 
torsional spring, and a static 
mass [3]
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Geometry

• Preliminary design for Europa 
Clipper tank and propellant 
management device (PMD)

• Mechanical design beyond scope 
of this presentation

• Design results in two slosh 
modes: full tank and sector slosh
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High-G Cases
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CFD Setup

• STAR-CCM+
• Program successfully used for previous NASA missions

• ICESat-2, OSIRIS-Rex, GPM
• Provides center of mass, forces and moments on the tank and PMD, 

and moment of inertia of the settled propellant
• Propellant surface initialized at 5 degrees from horizontal
• Polyhedral mesh with prism cells at the walls
• 400,000-cell mesh chosen for modeling
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Mesh Independence Analysis

Cell Count Acceleration 
(m/s2)

Mesh Type Avg % Diff 
from Finest 
Mesh CMy

Avg % Diff 
from Finest 

Mesh Fy

Avg % Diff 
from Finest 
Mesh Mx

116k 0.067 Polyhedral 31.57 140.31 233.61
250k 0.067 Polyhedral 11.32 6.44 8.86
400k 0.067 Polyhedral 4.32 4.23 3.36
500k 0.067 Polyhedral 2.66 2.29 1.88
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MON-3 Center of Mass Movement in 
Principle Sloshing Direction

• Center of mass movement 
over time

• Smaller fill fractions have 
higher initial offsets due 
to larger percentage of 
mass displaced

• Higher fill fractions damp 
out more quickly
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MON-3 Force Results

• Force on tank over time
• Higher fill fractions 

produce higher forces due 
to higher total mass
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MON-3 Moment Results

• Moment on the tank over 
time

• Moments calculated from 
forces so they have similar 
behavior



Pendulum Parameter Method

• Two damped pendulums and a 
static mass

• Pendulum parameters matched 
to CFD results using a MATLAB 
code written for this purpose [4]

• Reduces error between CFD 
and pendulum model
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Pendulum Center of Mass Data for 
MON-3 at a Fill Fraction of 0.5

• Contribution from both 
the sector and full tank 
mode pendulums can be 
seen in the total behavior

• Full tank slosh has lower 
frequency, higher 
damping, and higher 
initial magnitude than 
sector slosh

• Matches CFD well except 
in beginning due to 
damping assumptions or 
surface initialization
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Pendulum Force Data for NTO 
at a Fill Fraction of 0.5

• Force from pendulums 
matched CFD well if 
center of mass data 
matched well

• Full tank mode pendulum 
damps out very quickly
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Pendulum Moment Data for NTO 
at a Fill Fraction of 0.5

• Hinge point of the 
pendulums were adjusted 
to match data to CFD

• Full tank mode pendulum 
again damps out quickly



Pendulum Parameter Trends

• Trends allow interpolation between fill fractions not examined by CFD
• Two engineers completed the pendulum parameter matching process 

creating two sets of pendulum parameters at each fill fraction
• Allowed analysis of impact of input variables on program output

• One set of parameters was chosen to represent each fill fraction in 
the trends to reduce error

• To be used in other mission analyses
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Pendulum Mass Trend for High Acceleration
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Pendulum Hinge Height Trend for High Acceleration
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Static Mass Location Trend for High Acceleration
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Pendulum Frequency Trend for High Acceleration
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Pendulum Damping Ratio Trend for High Acceleration



Low-G Cases
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Method

• Surface evolver used to model low-g cases
• Program minimizes the energy of the system [5]

• Initialized with propellant symmetric about the centerline of the tank
• Iterated until no or insignificant movement in the center of mass was 

observed
• Run at multiple accelerations to allow pendulum model parameters 

to be found
• Surface Evolver is a steady state code
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Pendulum Parameter Method

• Single damped pendulum with a 
torsional spring and a static 
mass

• Parameters derived through 
combination of graphical 
analysis of surface evolver 
results and a MATLAB code 
created for this purpose

• Damping ratio assumed to be 
10% from heritage analyses [3]
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Center of Mass Match Between Surface 
Evolver and Pendulum Model in the Horizontal Direction
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Center of Mass Match Between Surface 
Evolver and Pendulum Model in the Vertical Direction



Parameter Uncertainty

• Uncertainty in the input values estimated from reasonable user 
decisions

• Partial derivatives of the equations used to derive the pendulum 
parameters were taken with respect to input variables

• Root squared sum method used to add errors from input variables
• Uncertainties checked using three engineers completing the same 

process for the same Surface Evolver results
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Pendulum Mass Versus Fill Fraction
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Pendulum Hinge Height Versus Fill Fraction
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Pendulum Static Hinge Height Versus Fill Fraction
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Pendulum Length Versus Fill Fraction
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Pendulum Frequency Versus Fill Fraction
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Pendulum Spring Constant Versus Fill Fraction
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Static Mass Versus Fill Fraction
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Static Vertical Axis Moment of Inertia Versus Fill Fraction
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Static Horizontal Axis Moment of Inertia Versus Fill Fraction



Uncertainty Summary

• Significant uncertainty in the results
• Values obtained by uncertainty analysis appear to be sufficient in 

nearly all cases
• Input variable most likely at fault when uncertainty bars don’t 

encompass differences in the user results is the input pendulum angle 
due to large uncertainties in this value
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Conclusion

• Mechanical models found for both high and low-g cases
• Reasonable differences between users show repeatability of 

processes
• Trends found between fill fractions to allow easy interpolation for 

inputs to attitude control system software
• Changes in trend behavior occur at locations where PMD and tank 

geometry change most rapidly
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